- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Ara Ghoreishi, Seyedeh Gol (1)
-
Boateng, Charles (1)
-
Conniff, Joshua (1)
-
Furht, Borko (1)
-
Jan, Muhammad Tanveer (1)
-
Jang, Jinwoo (1)
-
Moshfeghi, Sonia (1)
-
Newman, David (1)
-
Rosseli, Monica (1)
-
Tappen, Ruth (1)
-
Yang, Kwangsoo (1)
-
Zhai, Jinnan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Given a GPS dataset comprising driving records captured at one-second intervals, this research addresses the challenge of Abnormal Driving Detection (ADD). The study introduces an integrated approach that leverages data preprocessing, dimensionality reduction, and clustering techniques. Speed Over Ground (SOG), Course Over Ground (COG), longitude (lon), and latitude (lat) data are aggregated into minute-level segments. We use Singular Value Decomposition (SVD) to reduce dimensionality, enabling K-means clustering to identify distinctive driving patterns. Results showcase the methodology's effectiveness in distinguishing normal from abnormal driving behaviors, offering promising insights for driver safety, insurance risk assessment, and personalized interventions.more » « less
An official website of the United States government
